A programmable optical angle clamp for rotary molecular motors.

نویسندگان

  • Teuta Pilizota
  • Thomas Bilyard
  • Fan Bai
  • Masamitsu Futai
  • Hiroyuki Hosokawa
  • Richard M Berry
چکیده

Optical tweezers are widely used for experimental investigation of linear molecular motors. The rates and force dependence of steps in the mechanochemical cycle of linear motors have been probed giving detailed insight into motor mechanisms. With similar goals in mind for rotary molecular motors we present here an optical trapping system designed as an angle clamp to study the bacterial flagellar motor and F(1)-ATPase. The trap position was controlled by a digital signal processing board and a host computer via acousto-optic deflectors, the motor position via a three-dimensional piezoelectric stage and the motor angle using a pair of polystyrene beads as a handle for the optical trap. Bead-pair angles were detected using back focal plane interferometry with a resolution of up to 1 degrees , and controlled using a feedback algorithm with a precision of up to 2 degrees and a bandwidth of up to 1.6 kHz. Details of the optical trap, algorithm, and alignment procedures are given. Preliminary data showing angular control of F(1)-ATPase and angular and speed control of the bacterial flagellar motor are presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid Prototyping of a Micromotor with an Optical Rotary Encoder

This study proposed a rapid prototyping fabrication method for micromotors that allowed us to develop both 1 mm and 1.5 mm diameter permanent-magnet synchronous motors (PMSMs) with an optical rotary encoder. First, an integrated electroforming method was proposed for combining stator housing and flexible print circuit (FPC) coils to ease the manufacturing and assembly of micromotor components. ...

متن کامل

Torque, chemistry and efficiency in molecular motors: a study of the rotary–chemical coupling in F1-ATPase

Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary-chemical couplin...

متن کامل

Synthetic Molecular Motors

The fascinating molecular motors ubiquitous in biological systems offer a great source of inspiration for the design of artificial motors and in the quest to achieve controlled movement at the molecular level. Synthetic chemists are involved in the challenging endeavor to exploit ormimic the properties of these intriguingmolecules found in nature. Movement in biological systems can be divided i...

متن کامل

A redesign of light-driven rotary molecular motors.

Structural modification of unidirectional light-driven rotary molecular motors in which the naphthalene moieties are exchanged for substituted phenyl moieties are reported. This redesign provides an additional tool to control the speed of the motors, and should enable the design and synthesis of more complex systems.

متن کامل

Visible-Light Excitation of a Molecular Motor with an Extended Aromatic Core

Exploring routes to visible-light-driven rotary motors, the possibility of red-shifting the excitation wavelength of molecular motors by extension of the aromatic core is studied. Introducing a dibenzofluorenyl moiety in a standard molecular motor resulted in red-shifting of the absorption spectrum. UV/vis and 1H NMR spectroscopy showed that these motors could be isomerized with light of wavele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 2007